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MATH 245 F19, Exam 1 Solutions

Carefully define the following terms: prime, Double Negation Theorem, Conditional

Interpretation Theorem.

Let n € N with n > 2. If there is NO a € N with 1 < a < n and a|n, then we

call n prime. The Double Negation Theorem states: Let p be a proposition. Then
= ——p. The Conditional Interpretation Theorem states: Let p,q be propositions.

Then p — q=qV —p.

Carefully define the following terms: Addition Semantic Theorem, Vacuous Proof The-
orem, contrapositive

The Addition Semantic Theorem states: Let p, ¢ be propositions. p - pV¢q. The Vacu-
ous Proof Theorem states: Let p, ¢ be propositions. (—p) F (p — ¢q). The contrapositive
of the compound proposition p — ¢ is the proposition (—q) — (—p).

Let p, ¢ be propositions. Prove or disprove: (p A ¢) — (p — q) is a tautology.

The statement is true. Because the fifth pAqg p—=q (pANg) — (p—q)
column of the truth table (to the right) is

P q

T T

all T, the proposition (pAq) = (p—q)is T F
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a tautology.
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Let m,n € Z. Prove or disprove: If m|n, then m|n?.

The statement is true. Suppose that m|n. Then there is some s € Z with ms = n.
Multiplying both sides by n, we have m(sn) = n?. Since sn € Z (being the product of
two integers), we must have m|n?.
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Let m,n € Ny with n > m. Evaluate and fully simplify 0y

n+1 (n+1)!
o T p— Im!(n—m)! Im!(n—m)! :
We have () _ it o)t (i Dimlnom)t (et Dnimi(n=m)! - _ntl - 7f Jegired,

" AT ml(n+1-m)n!  — ml(nt+l-m)(n—m)ln! = nt+l-m"

. . n+l-m+m __ _m
this can be also written as e —— 1+ Tl

Prove or disprove: For arbitrary x,y € R, if x, y are both rational, then % is rational.

The statement is true, and we give a direct proof. We assume that x,y are rational.
a (&

Hence there are integers a,b,c,d, with b,d # 0, such that x = ¢ and y = £. Now,

x—;”’ = # = “dTerbc. Now, ad+bc, 2bd are both integers, and 2bd # 0, so % is rational.

Fix our domain to be R. Simplify the proposition —(Vz Jy Vz, z < y < z) as much as
possible (where nothing is negated).

We begin by pulling — inside the quantifiers, getting dz Vy Jz —(z < y < 2).
Note that 2 < y < 2z = (x < y) A (y < z), so we apply De Morgan’s law to
get 3z Vy 3z (—(x < y)) V (=(y < 2)). Lastly, we simplify the inequalities to get
Jx Vy 32 (x > y) V (y > 2). Note that this can NOT be written as a double inequality.
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State and prove modus ponens, using semantic theorems only (no truth tables).
Thm: Let p, q be propositions. Then p — ¢,p F ¢.

Pf 1. We assume p — ¢ and p. By conditional interpretation, ¢ V —p. By double
negation, ~—p. By disjunctive syllogism, q.

Pf 2: We assume p — ¢ and p. We have p — ¢ = (—¢q) — (—p), its contrapositive. By
double negation, =—p. By modus tollens, =—¢. By double negation again, q.

Prove or disprove the proposition Vo € N, Jy € N, 2?2 <y < (z + 1)

The statement is true. Let € N be arbitrary. Take y = 22 + 1. Note that y — 22 =
1 € Ny, so 22 < y. But also 2?2 # y, since y — 22 # 0. Hence 22 < y. Now,
(r+1)—y=(@*42x+1)— (z*+1) =2z. Sincexz € N, 2z € N, so (x +1)* > y.
But also (z + 1)? # y, since 2z # 0. Hence (z + 1)* > y.

Let p,q be propositions. Find a compound proposition, using the operator nand (1)
exactly three times (and no other operators), that is logically equivalent to p V q. Prove
your answer.

The desired propositionis (p 1+ p) + (¢1¢); P ¢ ptp qtq (tp)1(@tad pVg
its equivalence to p \V ¢ is proved by the T T F F T T
agreement of the fifth and sixth columns 7 F F T T T
of the truth table at right. F T T F T T
Note: this was (part of) exercise 2.17. F F T T F F



